ERP与数据仓库的结合

当今社会是一个信息爆炸的时代,信息丰富而知识贫乏的现象非常普遍。“啤酒搭着尿布卖”的故事曾经触动了多少人的神经。信息作为现代企业的宝贵资源,占据着越来越重要的地位,已经成为现代企业科学管理的基础,正确决策的前提,有效调控的手段。

目前,面对激烈的市场竞争,许多大型企业纷纷实施“以客户为中心,以服务求发展”的经营策略。如何优化客户关系,增强企业的竞争优势已经成为现代企业关注的焦点。现有的应用系统往往以“产品”为中心,以“单据(票证)”处理为基础,是面向联机事务处理(Online Transaction Processing,简称OLTP)的系统,而以客户为中心的经营管理模式要求对现有业务系统的数据进行有效的集成并加以重组,建立面向联机分析处理(Online Analysis Processing,简称OLAP)的系统。通过分析客户的行为,掌握不同类型客户的特征,进而为客户提供更加优质的服务,尤其是个性化的服务,同时全面掌握并理解、分析企业业务的发生情况,充分发挥企业现已积累的数据,为各级管理人员提供科学化管理和决策的有力依据,以提高企业的经营业绩,保证利润的持续增长。

同时,随着企业信息化程度的不断提高,各类应用系统同时并存并支撑着企业的业务应用。越来越多企业的信息化主管在开发企业应用时已经考虑到数据集成和将来对数据的整体有效利用,因此,在实施了ERP解决方案之后,很多企业选择实施数据仓库产品来避免信息孤岛,实现应用的内部联系和信息的共享。

什么是数据仓库呢?

一般认为,数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。

面向主题:操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。

集成的:数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。

相对稳定的:数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。

反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

一个典型的企业数据仓库系统通常包含数据源、数据存储与管理、OLAP服务器以及前端工具与应用四个部分。

数据源:是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。

数据的存储与管理:是整个数据仓库系统的核心。在现有各业务系统的基础上,对数据进行抽取、清理,并有效集成,按照主题进行重新组织,最终确定数据仓库的物理存储结构,同时组织存储数据仓库元数据(具体包括数据仓库的数据字典、记录系统定义、数据转换规则、数据加载频率以及业务规则等信息)。

OLAP服务器:对分析需要的数据按照多维数据模型进行再次重组,以支持用户多角度、多层次的分析,发现数据趋势。其具体实现可以分为:ROLAP、MOLAP和HOLAP。

前端工具与应用:前端工具主要包括各种数据分析工具、报表工具、查询工具、数据挖掘工具以及各种基于数据仓库或数据集市开发的应用。其中数据分析工具主要针对OLAP服务器,报表工具、数据挖掘工具,既针对数据仓库,同时也针对OLAP服务器。

在传统的ERP系统中,一般的核心应用都是进销存管理和账务管理,数据库中的数据也是紧紧围绕产品信息、票据和账目明细进行的。这样的数据层可以很好地实现OLTP,但如果要为企业高层提供决策数据的话,就有必要对这样原始的、松散的、孤立的数据进行抽取、清洗、加上时间标记并进行合理的分类,以使之能够进入数据仓库并支持OLAP。